[R-sig-ME] looking for differencies in G structure among factor levels using MCMCglmm
Diego Carmona
cosimo2000 at gmail.com
Tue Aug 19 03:46:48 CEST 2014
I am working with a multi-trait MCMCglmm model. The model has four plant
traits,
a three levels treatment is considered as a “fixed” factor and, as a random
factor,
I included the term family (64 full maternal siblings).
What I am willing to know is the syntax that allow me to estimate the
genetic variance-covariance matrices
for each treatment.
In general, I am looking for differences in G structure among factor
levels. I guess that it should be
something like
G-structure: ~ us (trait):fam
~ us (trait):fam:tratA
~ us (trait):fam:tratB
~ us (trait):fam:tratC
R-structure: ~us(trait):units
This was my last attempt.
prior2<-list(G=list(G1=list(V=phen.var1/4,n=2),
G2=list(V=phen.var1/4,n=2)),
R=list(V=phen.var1/4,n=2))
bayes.global1<-MCMCglmm(cbind(crece,
R,flor,frutos)~trait+trat+trait:trat-1,random =
~us(trait):fam+us(trait):fam:trat2,
rcov = ~us(trait):units, family = c("gaussian", "gaussian","gaussian",
"poisson"),
data = na.omit(basep), prior = prior2, verbose = FALSE,singular.ok=TRUE,
nitt=13000, thin=10, burnin=3000)
This is part of the summary.
G-structure: ~us(trait):fam
post.mean l-95% CI u-95% CI eff.samp
crece:crece.fam 0.0043452 0.0015103 8.050e-03 1000.0
R:crece.fam -0.0002719 -0.0014696 9.586e-04 1000.0
flor:crece.fam 0.0436852 -0.0689005 1.670e-01 1000.0
frutos:crece.fam 0.0053743 -0.0247571 4.286e-02 1000.0
etc...
~us(trait):fam:trat2
post.mean l-95% CI u-95% CI eff.samp
crece:crece.fam:trat2 0.0039826 0.0015898 6.967e-03 655.9
R:crece.fam:trat2 -0.0001361 -0.0010399 8.509e-04 900.4
flor:crece.fam:trat2 0.0237493 -0.0580506 1.238e-01 588.7
frutos:crece.fam:trat2 0.0046849 -0.0135320 2.080e-02 1000.0
etc...
R-structure: ~us(trait):units
post.mean l-95% CI u-95% CI eff.samp
crece:crece.units 0.0454059 0.038990 0.051924 848.7
R:crece.units -0.0008172 -0.002948 0.001473 1000.0
flor:crece.units -0.0084173 -0.201620 0.199751 1000.0
frutos:crece.units 0.0729428 0.048952 0.096300 1000.0
crece:R.units -0.0008172 -0.002948 0.001473 1000.0
Location effects: cbind(crece, R, flor, frutos) ~ trait + trat2 +
trait:trat2 - 1
post.mean l-95% CI u-95% CI eff.samp pMCMC
traitcrece 0.708005 0.660129 0.754760 1000 <0.001 ***
traitR 1.310004 1.287974 1.332702 1000 <0.001 ***
traitflor 56.262578 54.290430 58.332811 1000 <0.001 ***
traitfrutos 1.675350 1.189332 2.296322 1000 <0.001 ***
trat22 0.005729 -0.057418 0.058968 1000 0.810
trat23 0.014290 -0.045559 0.070862 1000 0.652
traitR:trat22 -0.134281 -0.199170 -0.061456 1421 <0.001 ***
traitflor:trat22 -3.233360 -5.507265 -0.632871 1263 0.014 *
traitfrutos:trat22 0.008789 -0.417274 0.505621 1000 0.998
traitR:trat23 -0.111668 -0.179654 -0.047945 1000 <0.001 ***
traitflor:trat23 -0.210391 -2.620701 2.472176 1000 0.912
traitfrutos:trat23 -0.145282 -0.724167 0.288831 1000 0.570
Many thanks
Muchas Gracias
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list