[R-sig-ME] PredictSE.mer error message
Jake Westfall
jake987722 at hotmail.com
Thu Aug 14 00:21:02 CEST 2014
Apparently predictSE.mer() is a function from the "AICcmodavg" package (it doesn't come with lme4). You should take this up with the maintainer of that package.
Jake
> From: yuki_himawari at hotmail.com
> To: r-sig-mixed-models at r-project.org
> Date: Wed, 13 Aug 2014 22:13:49 +0000
> Subject: [R-sig-ME] PredictSE.mer error message
>
> Hi
>
> I am running glmer model with binomial distribution and want to get confidence interval using fixed effect for each treatments.
> However I get the error message I don't really understand therefore I don't know how to modify the code.
>
> My model is
>
> model_2b <- glmer(cbind(NumberCorrect,10-NumberCorrect)~ ADHDYN + EmotionType + (1 | ID),
> family="binomial",data = data)
>
> and here is the summary output
>
> Generalized linear mixed model fit by maximum likelihood (Laplace Approximation) ['glmerMod']
> Family: binomial ( logit )
> Formula: cbind(NumberCorrect, 10 - NumberCorrect) ~ ADHDYN + EmotionType + (1 | ID)
> Data: data
>
> AIC BIC logLik deviance df.resid
> 2000.5 2034.5 -992.3 1984.5 508
>
> Scaled residuals:
> Min 1Q Median 3Q Max
> -3.4809 -0.7256 0.1760 0.7238 3.4354
>
> Random effects:
> Groups Name Variance Std.Dev.
> ID (Intercept) 0.1337 0.3656
> Number of obs: 516, groups: ID, 86
>
> Fixed effects:
> Estimate Std. Error z value Pr(>|z|)
> (Intercept) 1.15637 0.10193 11.345 < 2e-16 ***
> ADHDYNYES -0.27728 0.10236 -2.709 0.00675 **
> EmotionType2 2.04670 0.17845 11.469 < 2e-16 ***
> EmotionType3 -0.24761 0.10744 -2.305 0.02119 *
> EmotionType4 -1.79462 0.10811 -16.600 < 2e-16 ***
> EmotionType5 -0.04793 0.10939 -0.438 0.66129
> EmotionType6 -1.01871 0.10445 -9.753 < 2e-16 ***
> ---
>
> And I used the code below to get CI's but got error message.
>
> > predictSE.mer(model_2b, NEWdata,se.fit=TRUE, type="response",level=0, print.matrix=FALSE)
> Error in predictSE.mer(model_2b, NEWdata, se.fit = TRUE, type = "response", :
> no slot of name "offset" for this object of class "glmerMod"
> Can you please guide me where I am getting wrong? I noted the sd of random effect is quite large- so might be worth to do the simulation. I heard about MCMCsamp but is this the way to go?
>
> Thank you kindly
> Yuki
>
>
>
> [[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
[[alternative HTML version deleted]]
More information about the R-sig-mixed-models
mailing list