[R-sig-ME] mcmcsamp
Frank Lawrence
frl2 at psu.edu
Mon Dec 8 16:24:05 CET 2008
Hi Andrew:
Sorry for not including the example at the outset.
>sessionInfo()
R version 2.8.0 (2008-10-20)
i386-pc-mingw32
locale:
LC_COLLATE=English_United States.1252;LC_CTYPE=English_United
States.1252;LC_MONETARY=English_United
States.1252;LC_NUMERIC=C;LC_TIME=English_United States.1252
attached base packages:
[1] grid splines stats graphics grDevices datasets
[7] tcltk utils methods base
other attached packages:
[1] MCMCpack_0.9-5 coda_0.13-3 statmod_1.3.8
[4] polycor_0.7-6 sfsmisc_1.0-6 mvtnorm_0.9-2
[7] xtable_1.5-4 prettyR_1.3-5 lme4_0.999375-27
[10] Matrix_0.999375-16 effects_2.0-0 nnet_7.2-44
[13] mvnormtest_0.1-6 xlsReadWrite_1.3.2 gmodels_2.14.1
[16] gtools_2.5.0 latticeExtra_0.5-4 lattice_0.17-17
[19] RColorBrewer_1.0-2 doBy_3.6 foreign_0.8-29
[22] Design_2.1-2 survival_2.34-1 e1071_1.5-18
[25] class_7.2-44 car_1.2-9 mitools_2.0
[28] MASS_7.2-44 svSocket_0.9-5 TinnR_1.0.2
[31] R2HTML_1.59 Hmisc_3.4-4
##artificial data
> nn <- 1e2
> mm <- seq(1,5,1)
> cv <- matrix(data = rep(x = 0.3, times = 25), nc = 5, nr = 5)
> diag(cv) <- 1
> dat <- cbind.data.frame(id = seq(1,nn,1), mvrnorm(n = nn, m = mm, S = cv,
emp = T))
> names(dat)[2:6] <- paste('y',1:5,sep='')
> d.t <- reshape(data = dat, varying = list(names(dat)[2:6]), v.names = 'y',
times = seq(0,4,1), idvar = 'id', drop = NULL, dir = 'l')
> m1 <- lmer(form = y ~ time + (1|id), data = d.t, fam = gaussian, R = F, na
= na.exclude)
> m1
Linear mixed model fit by maximum likelihood
Formula: y ~ time + (1 | id)
Data: d.t
AIC BIC logLik deviance REMLdev
1370 1387 -681 1362 1371
Random effects:
Groups Name Variance Std.Dev.
id (Intercept) 0.409 0.640
Residual 0.955 0.977
Number of obs: 500, groups: id, 100
Fixed effects:
Estimate Std. Error t value
(Intercept) 1.0000 0.0860 11.6
time 1.0000 0.0309 32.4
Correlation of Fixed Effects:
(Intr)
time -0.719
> x <- mcmcsamp(obj = m1, n = 1e3)
> str(x)
Formal class 'merMCMC' [package "lme4"] with 9 slots
..@ Gp : int [1:2] 0 100
..@ ST : num [1, 1:1000] 0.655 0.529 0.448 0.401 0.406 ...
..@ call : language lmer(formula = y ~ time + (1 | id), data = d.t,
REML = F, na.action = na.exclude)
..@ deviance: num [1:1000] 1362 1350 1353 1359 1364 ...
..@ dims : Named int [1:18] 1 500 2 100 1 1 0 0 2 5 ...
.. ..- attr(*, "names")= chr [1:18] "nt" "n" "p" "q" ...
..@ fixef : num [1:2, 1:1000] 1 1 1.093 0.989 1.038 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:2] "(Intercept)" "time"
.. .. ..$ : NULL
..@ nc : int 1
..@ ranef : num[1:100, 0 ]
..@ sigma : num [1, 1:1000] 0.977 0.853 0.84 0.862 0.921 ...
##then I did the following which is not in the help file
> xyplot(x)##check
> x <- mcmcsamp(obj = m41, n = 1e3)
> summary(t(x at fixef))
(Intercept) emosympt schprob totalnetscr
Min. : 1.82 Min. :-0.4772 Min. :-0.206 Min. :-0.529
1st Qu.:22.11 1st Qu.:-0.1980 1st Qu.: 0.176 1st Qu.:-0.434
Median :27.10 Median :-0.1144 Median : 0.268 Median :-0.408
Mean :27.20 Mean :-0.1184 Mean : 0.262 Mean :-0.407
3rd Qu.:32.15 3rd Qu.:-0.0416 3rd Qu.: 0.348 3rd Qu.:-0.381
Max. :51.48 Max. : 0.2662 Max. : 0.636 Max. :-0.264
> colMeans(t(x at fixef))
(Intercept) emosympt schprob totalnetscr
27.200 -0.118 0.262 -0.407
##UCL and LCL
> colMeans(t(x at fixef)) + 1.96*sqrt(colVars(t(x at fixef)))
(Intercept) emosympt schprob totalnetscr
41.537 0.107 0.526 -0.330
> colMeans(t(x at fixef)) - 1.96*sqrt(colVars(t(x at fixef)))
(Intercept) emosympt schprob totalnetscr
12.86248 -0.34386 -0.00259 -0.48348
Respectfully,
Frank R. Lawrence
# -----Original Message-----
# From: Andrew Robinson [mailto:A.Robinson at ms.unimelb.edu.au]
# Sent: Saturday, December 06, 2008 2:45 PM
# To: Frank Lawrence
# Subject: Re: [R-sig-ME] mcmcsamp
#
# Hi Frank,
#
# can you provide a minimal, executable example?
#
# Cheers
#
# Andrew
#
# On Fri, Dec 05, 2008 at 02:53:34PM -0500, Frank Lawrence wrote:
# > I was attempting to run mcmcsamp on an lmer model without success. From
# the
# > archive I noted that some users had a similar difficulty a couple of
months
# > ago with obtaining fixed effect estimates. I was wondering if there is
any
# > new information on using mcmcsamp to obtain confidence intervals for
fixed
# > effects from an lmer object.
# >
# > Windows Vista, Home Premium. R-2.8
# >
# > Respectfully,
# >
# > Frank R. Lawrence
# >
# > _______________________________________________
# > R-sig-mixed-models at r-project.org mailing list
# > https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
#
# --
# Andrew Robinson
# Department of Mathematics and Statistics Tel: +61-3-8344-6410
# University of Melbourne, VIC 3010 Australia Fax: +61-3-8344-4599
# http://www.ms.unimelb.edu.au/~andrewpr
# http://blogs.mbs.edu/fishing-in-the-bay/
More information about the R-sig-mixed-models
mailing list