[R-sig-ME] generalized linear mixed models: large differences when using glmmPQL or lmer with laplace approximation

Ken Beath ken at kjbeath.com.au
Tue Oct 7 23:07:50 CEST 2008


There is a large difference between the estimated std of the random  
effect, usually a sign that the glmmPQL approximation isn't working.

I would try using adaptive Gauss-Hermite. Set the nAGQ parameter to  
increasing values until the results stabilise.

Ken

On 08/10/2008, at 12:21 AM, Martijn Vandegehuchte wrote:

> Dear list,
>
> First of all, I am a mere ecologist, trying to get the truth out of  
> his data, and not a statistician, so forgive me my lack of  
> statistical background and possible conceptual misunderstandings.
>
> I am currently comparing generalized linear mixed models in glmmPQL  
> and lmer, with a quasipoisson family, and have found out that  
> parameter estimates are quite different for both methods. I read  
> some of the discussions on the R-forum and it seems that the Laplace  
> approximation used in the current version of lmer is generally  
> preferred to the PQL method. I am an ex-SAS user, and in proc  
> glimmix in SAS the default is PQL, and the estimates and p-values  
> are almost exact the same as with glmmPQL in R. But lmer gives quite  
> different results, and now I am wondering what would be the best  
> option for me.
>
> First of all, parameter estimates of a same model can be somewhat  
> different in lmer or glmmPQL. Second of all, in lmer, I only get t- 
> values but no associated p-values (apparently they are omitted  
> because of the uncertainty about the df). But if I compare the t- 
> values generated by glmmPQL with those of a same model in lmer, the  
> differences are substantial. My dataset consists of 120  
> observations, so basically you could guess the order of magnitude of  
> the p-values in lmer based on the t-value and a "large" df.
>
> First example:
> In lmer:
>
>> model<-lmer(schirufu~diameter+leafvit+densroot+cover+nemcm+(1| 
>> site),family=quasipoisson)
>> summary (model)
> Generalized linear mixed model fit by the Laplace approximation
> Formula: schirufu ~ diameter + leafvit + densroot + cover + nemcm +  
> (1 |      site)
>  AIC  BIC logLik deviance
> 2045 2068  -1015     2029
> Random effects:
> Groups   Name        Variance Std.Dev.
> site     (Intercept) 12.700   3.5638
> Residual             15.182   3.8964
> Number of obs: 120, groups: site, 6
>
> Fixed effects:
>            Estimate Std. Error t value
> (Intercept)  1.31017    1.47249   0.890
> diameter    -0.24799    0.29180  -0.850
> leafvit      1.29007    0.21041   6.131
> densroot     0.31024    0.04939   6.281
> cover       -0.24544    0.22179  -1.107
> nemcm        0.24817    0.12028   2.063
>
> Correlation of Fixed Effects:
>         (Intr) diamtr leafvt densrt cover
> diameter  0.031
> leafvit  -0.083  0.321
> densroot  0.011 -0.017 -0.202
> cover     0.021 -0.448  0.016  0.214
> nemcm    -0.014  0.114  0.114  0.310 -0.017
>>
>
> Although no p-values are given, it suggests that fixed effects  
> leafvit, densroot and nemcm would be significant.
> In glmmPQL:
>
>> model<-glmmPQL(schirufu~diameter+leafvit+densroot+cover 
>> +nemcm,random=~1|site,family=quasipoisson)
> iteration 1
> iteration 2
> iteration 3
> iteration 4
> iteration 5
>> summary(model)
> Linear mixed-effects model fit by maximum likelihood
> Data: NULL
>  AIC BIC logLik
>   NA  NA     NA
>
> Random effects:
> Formula: ~1 | site
>        (Intercept) Residual
> StdDev:   0.7864989  4.63591
>
> Variance function:
> Structure: fixed weights
> Formula: ~invwt
> Fixed effects: schirufu ~ diameter + leafvit + densroot + cover +  
> nemcm
>                 Value Std.Error  DF   t-value p-value
> (Intercept)  1.4486735 0.4174843 109  3.470007  0.0007
> diameter    -0.2600504 0.3477017 109 -0.747913  0.4561
> leafvit      1.2236406 0.2489291 109  4.915619  0.0000
> densroot     0.3236446 0.0596342 109  5.427164  0.0000
> cover       -0.2523163 0.2698555 109 -0.935005  0.3519
> nemcm        0.2336305 0.1451751 109  1.609301  0.1104
> Correlation:
>         (Intr) diamtr leafvt densrt cover
> diameter  0.130
> leafvit  -0.335  0.313
> densroot  0.027 -0.022 -0.203
> cover     0.090 -0.463  0.015  0.214
> nemcm    -0.056  0.097  0.107  0.301 -0.014
>
> Standardized Within-Group Residuals:
>       Min         Q1        Med         Q3        Max
> -2.4956188 -0.4154369 -0.1333850  0.1724601  4.7355928
>
> Number of Observations: 120
> Number of Groups: 6
>>
>
> Note the difference in parameter estimates. Also, the fixed effect  
> nemcm now is not significant any more.
>
> Second example,now with an offset:
> In lmer:
>
>> model<-lmer(nemcm~diameter+leafvit+densroot+rootvit+cover+schirufu 
>> +(1|site), offset= loglength, family=quasipoisson)
>> summary (model)
> Generalized linear mixed model fit by the Laplace approximation
> Formula: nemcm ~ diameter + leafvit + densroot + rootvit + cover +  
> schirufu +      (1 | site)
>  AIC  BIC logLik deviance
> 1593 1618 -787.4     1575
> Random effects:
> Groups   Name        Variance Std.Dev.
> site     (Intercept)  21.522   4.6392
> Residual             173.888  13.1867
> Number of obs: 120, groups: site, 6
>
> Fixed effects:
>            Estimate Std. Error t value
> (Intercept)  0.06733    1.92761  0.0349
> diameter     0.14665    0.60693  0.2416
> leafvit     -0.19902    0.48802 -0.4078
> densroot    -0.49178    0.64221 -0.7658
> rootvit      0.37699    0.46810  0.8054
> cover       -0.23545    0.57896 -0.4067
> schirufu     0.23226    0.46866  0.4956
>
> Correlation of Fixed Effects:
>         (Intr) diamtr leafvt densrt rootvt cover
> diameter -0.016
> leafvit   0.015  0.396
> densroot  0.055 -0.233 -0.291
> rootvit  -0.038 -0.251 -0.629  0.277
> cover     0.024 -0.796 -0.133  0.253  0.117
> schirufu -0.032  0.137 -0.029 -0.505 -0.078 -0.121
>>
>
> This suggests no significant effects at all.
> In glmmPQL:
>
>> model<-glmmPQL(nemcm~diameter+leafvit+densroot+rootvit+cover 
>> +schirufu+offset(loglength),random=~1|site, family=quasipoisson)
> iteration 1
> iteration 2
> iteration 3
>> summary (model)
> Linear mixed-effects model fit by maximum likelihood
> Data: NULL
>  AIC BIC logLik
>   NA  NA     NA
>
> Random effects:
> Formula: ~1 | site
>        (Intercept) Residual
> StdDev:   0.2684477 4.507758
>
> Variance function:
> Structure: fixed weights
> Formula: ~invwt
> Fixed effects: nemcm ~ diameter + leafvit + densroot + rootvit +  
> cover + schirufu +      offset(loglength)
>                 Value Std.Error  DF    t-value p-value
> (Intercept)  0.1131898 0.1656949 108  0.6831220  0.4960
> diameter     0.1225231 0.1976568 108  0.6198779  0.5366
> leafvit     -0.2191361 0.1697784 108 -1.2907181  0.1996
> densroot    -0.4733839 0.2221562 108 -2.1308604  0.0354
> rootvit      0.3858120 0.1615706 108  2.3878846  0.0187
> cover       -0.2075038 0.1922054 108 -1.0795940  0.2827
> schirufu     0.2028444 0.1633954 108  1.2414323  0.2171
> Correlation:
>         (Intr) diamtr leafvt densrt rootvt cover
> diameter -0.050
> leafvit   0.077  0.360
> densroot  0.217 -0.168 -0.262
> rootvit  -0.163 -0.202 -0.632  0.257
> cover     0.084 -0.772 -0.098  0.200  0.073
> schirufu -0.103  0.099 -0.050 -0.483 -0.068 -0.075
>
> Standardized Within-Group Residuals:
>       Min         Q1        Med         Q3        Max
> -1.1146287 -0.5208003 -0.1927005  0.2462878  7.9755368
>
> Number of Observations: 120
> Number of Groups: 6
>>
>
> Again some differences in parameter estimates, but now the two fixed  
> effects densroot and rootvit turn out to be significant.
> So my questions are:
> - what would you recommend me to use? lmer or glmmPQL (laplace  
> approximation or penalized quasi-likelihood)?
> - if lmer is the better option, is there a way to get a reliable p- 
> value for the fixed effects?
> I have experienced that deleting a term and comparing models using  
> anova() always overestimates the significance of that term, probably  
> because the quasipoisson correction for overdispersion is not taken  
> into account.
>
> Thank you very much beforehand,
>
> Martijn.
>
> -- 
> Martijn Vandegehuchte
> Ghent University
> Department Biology
> Terrestrial Ecology Unit
> K.L.Ledeganckstraat 35
> B-9000 Ghent
> telephone: +32 (0)9/264 50 84
> e-mail: martijn.vandegehuchte at ugent.be
>
> website TEREC: www.ecology.ugent.be/terec
>
> 	[[alternative HTML version deleted]]
>
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
>




More information about the R-sig-mixed-models mailing list