[R-sig-ME] generalized linear mixed models: large differences whenusing glmmPQL or lmer with laplace approximation

Doran, Harold HDoran at air.org
Tue Oct 7 16:17:12 CEST 2008


Do you have access to Generalized, Linear and Mixed Models (McCullough
and Searle)? There is a nice little discussion comparing PQL and laplace
and discussing why PQL may result in estimates that are biased and
inconsistent.

> -----Original Message-----
> From: r-sig-mixed-models-bounces at r-project.org 
> [mailto:r-sig-mixed-models-bounces at r-project.org] On Behalf 
> Of Martijn Vandegehuchte
> Sent: Tuesday, October 07, 2008 9:29 AM
> To: r-sig-mixed-models at r-project.org
> Subject: [R-sig-ME] generalized linear mixed models: large 
> differences whenusing glmmPQL or lmer with laplace approximation
> 
> Dear list,
> 
> First of all, I am a mere ecologist, trying to get the truth 
> out of his data, and not a statistician, so forgive me my 
> lack of statistical background and possible conceptual 
> misunderstandings.
> 
> I am currently comparing generalized linear mixed models in 
> glmmPQL and lmer, with a quasipoisson family, and have found 
> out that parameter estimates are quite different for both 
> methods. I read some of the discussions on the R-forum and it 
> seems that the Laplace approximation used in the current 
> version of lmer is generally preferred to the PQL method. I 
> am an ex-SAS user, and in proc glimmix in SAS the default is 
> PQL, and the estimates and p-values are almost exact the same 
> as with glmmPQL in R. But lmer gives quite different results, 
> and now I am wondering what would be the best option for me.
> 
> First of all, parameter estimates of a same model can be 
> somewhat different in lmer or glmmPQL. Second of all, in 
> lmer, I only get t-values but no associated p-values 
> (apparently they are omitted because of the uncertainty about 
> the df). But if I compare the t-values generated by glmmPQL 
> with those of a same model in lmer, the differences are 
> substantial. My dataset consists of 120 observations, so 
> basically you could guess the order of magnitude of the 
> p-values in lmer based on the t-value and a "large" df.
> 
> First example:
> In lmer:
> 
> > 
> model<-lmer(schirufu~diameter+leafvit+densroot+cover+nemcm+(1|site),fa
> > mily=quasipoisson)
> > summary (model)
> Generalized linear mixed model fit by the Laplace approximation 
> Formula: schirufu ~ diameter + leafvit + densroot + cover + 
> nemcm + (1 |      site) 
>   AIC  BIC logLik deviance
>  2045 2068  -1015     2029
> Random effects:
>  Groups   Name        Variance Std.Dev.
>  site     (Intercept) 12.700   3.5638  
>  Residual             15.182   3.8964  
> Number of obs: 120, groups: site, 6
> 
> Fixed effects:
>             Estimate Std. Error t value
> (Intercept)  1.31017    1.47249   0.890
> diameter    -0.24799    0.29180  -0.850
> leafvit      1.29007    0.21041   6.131
> densroot     0.31024    0.04939   6.281
> cover       -0.24544    0.22179  -1.107
> nemcm        0.24817    0.12028   2.063
> 
> Correlation of Fixed Effects:
>          (Intr) diamtr leafvt densrt cover 
> diameter  0.031                            
> leafvit  -0.083  0.321                     
> densroot  0.011 -0.017 -0.202              
> cover     0.021 -0.448  0.016  0.214       
> nemcm    -0.014  0.114  0.114  0.310 -0.017
> > 
> 
> Although no p-values are given, it suggests that fixed 
> effects leafvit, densroot and nemcm would be significant.
> In glmmPQL:
> 
> > 
> model<-glmmPQL(schirufu~diameter+leafvit+densroot+cover+nemcm,random=~
> > 1|site,family=quasipoisson)
> iteration 1
> iteration 2
> iteration 3
> iteration 4
> iteration 5
> > summary(model)
> Linear mixed-effects model fit by maximum likelihood
>  Data: NULL
>   AIC BIC logLik
>    NA  NA     NA
> 
> Random effects:
>  Formula: ~1 | site
>         (Intercept) Residual
> StdDev:   0.7864989  4.63591
> 
> Variance function:
>  Structure: fixed weights
>  Formula: ~invwt
> Fixed effects: schirufu ~ diameter + leafvit + densroot + 
> cover + nemcm 
>                  Value Std.Error  DF   t-value p-value
> (Intercept)  1.4486735 0.4174843 109  3.470007  0.0007
> diameter    -0.2600504 0.3477017 109 -0.747913  0.4561
> leafvit      1.2236406 0.2489291 109  4.915619  0.0000
> densroot     0.3236446 0.0596342 109  5.427164  0.0000
> cover       -0.2523163 0.2698555 109 -0.935005  0.3519
> nemcm        0.2336305 0.1451751 109  1.609301  0.1104
>  Correlation: 
>          (Intr) diamtr leafvt densrt cover 
> diameter  0.130                            
> leafvit  -0.335  0.313                     
> densroot  0.027 -0.022 -0.203              
> cover     0.090 -0.463  0.015  0.214       
> nemcm    -0.056  0.097  0.107  0.301 -0.014
> 
> Standardized Within-Group Residuals:
>        Min         Q1        Med         Q3        Max 
> -2.4956188 -0.4154369 -0.1333850  0.1724601  4.7355928 
> 
> Number of Observations: 120
> Number of Groups: 6 
> > 
> 
> Note the difference in parameter estimates. Also, the fixed 
> effect nemcm now is not significant any more.
> 
> Second example,now with an offset:
> In lmer:
> 
> > 
> model<-lmer(nemcm~diameter+leafvit+densroot+rootvit+cover+schirufu+(1|
> > site), offset= loglength, family=quasipoisson) summary (model)
> Generalized linear mixed model fit by the Laplace approximation 
> Formula: nemcm ~ diameter + leafvit + densroot + rootvit + 
> cover + schirufu +      (1 | site) 
>   AIC  BIC logLik deviance
>  1593 1618 -787.4     1575
> Random effects:
>  Groups   Name        Variance Std.Dev.
>  site     (Intercept)  21.522   4.6392 
>  Residual             173.888  13.1867 
> Number of obs: 120, groups: site, 6
> 
> Fixed effects:
>             Estimate Std. Error t value
> (Intercept)  0.06733    1.92761  0.0349
> diameter     0.14665    0.60693  0.2416
> leafvit     -0.19902    0.48802 -0.4078
> densroot    -0.49178    0.64221 -0.7658
> rootvit      0.37699    0.46810  0.8054
> cover       -0.23545    0.57896 -0.4067
> schirufu     0.23226    0.46866  0.4956
> 
> Correlation of Fixed Effects:
>          (Intr) diamtr leafvt densrt rootvt cover 
> diameter -0.016                                   
> leafvit   0.015  0.396                            
> densroot  0.055 -0.233 -0.291                     
> rootvit  -0.038 -0.251 -0.629  0.277              
> cover     0.024 -0.796 -0.133  0.253  0.117       
> schirufu -0.032  0.137 -0.029 -0.505 -0.078 -0.121
> > 
> 
> This suggests no significant effects at all.
> In glmmPQL:
> 
> > 
> model<-glmmPQL(nemcm~diameter+leafvit+densroot+rootvit+cover+schirufu+
> > offset(loglength),random=~1|site, family=quasipoisson)
> iteration 1
> iteration 2
> iteration 3
> > summary (model)
> Linear mixed-effects model fit by maximum likelihood
>  Data: NULL
>   AIC BIC logLik
>    NA  NA     NA
> 
> Random effects:
>  Formula: ~1 | site
>         (Intercept) Residual
> StdDev:   0.2684477 4.507758
> 
> Variance function:
>  Structure: fixed weights
>  Formula: ~invwt 
> Fixed effects: nemcm ~ diameter + leafvit + densroot + 
> rootvit + cover + schirufu +      offset(loglength) 
>                  Value Std.Error  DF    t-value p-value
> (Intercept)  0.1131898 0.1656949 108  0.6831220  0.4960
> diameter     0.1225231 0.1976568 108  0.6198779  0.5366
> leafvit     -0.2191361 0.1697784 108 -1.2907181  0.1996
> densroot    -0.4733839 0.2221562 108 -2.1308604  0.0354
> rootvit      0.3858120 0.1615706 108  2.3878846  0.0187
> cover       -0.2075038 0.1922054 108 -1.0795940  0.2827
> schirufu     0.2028444 0.1633954 108  1.2414323  0.2171
>  Correlation: 
>          (Intr) diamtr leafvt densrt rootvt cover 
> diameter -0.050                                   
> leafvit   0.077  0.360                            
> densroot  0.217 -0.168 -0.262                     
> rootvit  -0.163 -0.202 -0.632  0.257              
> cover     0.084 -0.772 -0.098  0.200  0.073       
> schirufu -0.103  0.099 -0.050 -0.483 -0.068 -0.075
> 
> Standardized Within-Group Residuals:
>        Min         Q1        Med         Q3        Max 
> -1.1146287 -0.5208003 -0.1927005  0.2462878  7.9755368 
> 
> Number of Observations: 120
> Number of Groups: 6 
> > 
> 
> Again some differences in parameter estimates, but now the 
> two fixed effects densroot and rootvit turn out to be significant.
> So my questions are:
> - what would you recommend me to use? lmer or glmmPQL 
> (laplace approximation or penalized quasi-likelihood)?
> - if lmer is the better option, is there a way to get a 
> reliable p-value for the fixed effects?
> I have experienced that deleting a term and comparing models 
> using anova() always overestimates the significance of that 
> term, probably because the quasipoisson correction for 
> overdispersion is not taken into account. 
> 
> Thank you very much beforehand,
> 
> Martijn.
> 
> --
> Martijn Vandegehuchte
> Ghent University
> Department Biology
> Terrestrial Ecology Unit
> K.L.Ledeganckstraat 35
> B-9000 Ghent
> telephone: +32 (0)9/264 50 84
> e-mail: martijn.vandegehuchte at ugent.be 
> 
> website TEREC: www.ecology.ugent.be/terec
> 
> 	[[alternative HTML version deleted]]
> 
> _______________________________________________
> R-sig-mixed-models at r-project.org mailing list 
> https://stat.ethz.ch/mailman/listinfo/r-sig-mixed-models
> 




More information about the R-sig-mixed-models mailing list