[R-sig-hpc] mclapply: rm intermediate objects and returning memory
Ramon Diaz-Uriarte
rdiaz02 at gmail.com
Mon Oct 15 18:52:09 CEST 2012
Hi Simon,
First, thanks for the detailed explanations. Comments/questions below.
On Mon, 15 Oct 2012 12:17:20 -0400,Simon Urbanek <simon.urbanek at r-project.org> wrote:
> Ramon,
> On Oct 15, 2012, at 10:47 AM, Ramon Diaz-Uriarte wrote:
> > Dear All,
> >
> >
> > It seems that, in some cases, mclapply can result in out of memory
> > conditions that can be avoided by having the "X" argument split into smaller
> > pieces, and running mclapply several times. This is an example (on a
> > machine with 12 cores and 64 Gb of RAM [similar examples can be created
> > for different numbers of cores and RAM]):
> >
> >
> > #########################
> > library(parallel)
> > data.500 <- matrix(1.1, nrow = 3*10^6, ncol = 500)
> > print(object.size(data.500), units = "Mb")
> >
> > f1 <- function(index, data) {
> > x <- data[, index]
> > u <- 2 * x
> > return(u)
> > }
> >
> > ## This will not run
> > tmp1 <- mclapply(1:500, f1, data.500,
> > mc.cores = detectCores())
> >
> >
> > ## These will run
> >
> >
> > tmp1a <- mclapply(1:100, f1, data.500,
> > mc.cores = detectCores())
> > tmp1b <- mclapply(101:200, f1, data.500,
> > mc.cores = detectCores())
> > tmp1c <- mclapply(201:300, f1, data.500,
> > mc.cores = detectCores())
> > tmp1d <- mclapply(301:400, f1, data.500,
> > mc.cores = detectCores())
> > tmp1e <- mclapply(401:500, f1, data.500,
> > mc.cores = detectCores())
> >
> > tmp <- c(tmp1a, tmp1b, tmp1c, tmp1d, tmp1e)
> >
> > ########################
> >
> > Notice that the problem is not simply memory usage by the master, since
> > the last concatenation of the five lists works.
> >
> >
> > However, if we delete intermediate objects as in:
> >
> > ##############
> >
> > f1 <- function(index, data) {
> > x <- data[, index]
> > u <- 2 * x
> > rm(x); gc() ### This is the only change
> > return(u)
> > }
> > #############
> >
> > then it does run.
> >
> >
> >
> >
> > It also runs if we use the original function (i.e., we do not delete
> > intermediate results) but change the scheduling:
> >
> >
> > #################
> >
> > f1 <- function(index, data) {
> > x <- data[, index]
> > u <- 2 * x
> > return(u)
> > }
> >
> > tmp1 <- mclapply(1:500, f1, data.500,
> > mc.cores = detectCores(),
> > mc.preschedule = FALSE)
> >
> > ###################
> >
> >
> >
> >
> > So it seems that, with preschedule = TRUE, each slave does not return the
> > memory to the OS until all the jobs are collected by the master. Before
> > that, in terms of memory, it is as if a list as long as X is kept, but not
> > just with the return objects, but also with all the intermediate (and non
> > deleted) objects (i.e., it is as if each function invocation has not
> > really fully returned?).
> >
> That should not be the case since x goes out of scope, it is not stored
> by mclapply (NB: each job is a simple lapply()). However, you may be
> running into something else: note that the jobs are all independent, so
> they are not aware of each other's memory usage. One job cannot trigger
> garbage collection in another one. So what probably happens is that the
> faster jobs feel just fine, because they are not running out of memory
> so they don't trigger garbage collection. However, another job may be
> strapped for memory, it will run its own garbage collection, but that
> won't free enough memory. It cannot trigger gc in the other job, so it
> is stuck. By forcing gc() you're making sure that all jobs will be
> running the garbage collector and thus it's less likely that they will
> push each other out of memory.
> > In the help file, mc.preschedule = TRUE is the recommended setting for
> > large number of values in X (and in my experiments setting it to FALSE
> > makes things slower). I guess, then, that the recommended way of dealing
> > with these issues is carefully deleting (and gc'ing) any non-needed
> > intermediate result? Is this correct?
> >
> The intermediate result itself is harmless, it will be collected
> eventually, but not necessarily right after the function
> returns. However, depending on your machine's memory usage that delay
Aha, OK, I think I understand now. I was expecting all of the memory
(except that associated with the object being explicitly returned) to have
been freed at that point (right after the function returns). So the
problem lied on my expectations ;-).
> may be enough to trigger the above. I cannot replicate your problem on
> my machine, so try just adding gc() alone - it should make sure that at
> least all temporary objects from previous iterations are gone and I
> would hope that it solves your problem. If you are on the edge with your
I just rerun the example above, using only gc() without explicitly
removing the x, and it does work fine.
> memory usage, you may want to run something like {x <- local({ ... });
> gc(); x} - but in your case it should not be necessary since the
> temporary objects are small per iteration.
Thanks for the suggestion. I'll play around with local. I actually run
into this as part of a different problem, on a machine with a lot more RAM
(256 GB) and many more cores (64), where several large temporary objects
are created inside each function.
If I understand correctly, though, using x <- local() would not provide
any advantage compared to explicitly removing the objects and calling
gc(). Is this correct?
> Re. your suggestion, I agree that mclapply offers two extremes: either
> work size of 1 or n/cores, nothing in between. For some applications it
> may be beneficial to use other sizes - if someone would be willing to
> give it a shot, I could review it.
Actually, I am rather happy with the two options (in fact, most of the
time I only use preschedule = TRUE); it was just that I was not really
understanding memory usage. ;-).
Thanks again for your detailed explanation.
R.
> Cheers,
> Simon
> >
> >
> > Best,
> >
> > R.
> >
> >
> > --
> > Ramon Diaz-Uriarte
> > Department of Biochemistry, Lab B-25
> > Facultad de Medicina
> > Universidad Autónoma de Madrid
> > Arzobispo Morcillo, 4
> > 28029 Madrid
> > Spain
> >
> > Phone: +34-91-497-2412
> >
> > Email: rdiaz02 at gmail.com
> > ramon.diaz at iib.uam.es
> >
> > http://ligarto.org/rdiaz
> >
> > _______________________________________________
> > R-sig-hpc mailing list
> > R-sig-hpc at r-project.org
> > https://stat.ethz.ch/mailman/listinfo/r-sig-hpc
--
Ramon Diaz-Uriarte
Department of Biochemistry, Lab B-25
Facultad de Medicina
Universidad Autónoma de Madrid
Arzobispo Morcillo, 4
28029 Madrid
Spain
Phone: +34-91-497-2412
Email: rdiaz02 at gmail.com
ramon.diaz at iib.uam.es
http://ligarto.org/rdiaz
More information about the R-sig-hpc
mailing list