[R] Jitter in correlation matrix?

Mehmet Atif Ergun mehmetaergun at gmail.com
Mon Feb 25 17:17:27 CET 2008


Hi,

thanks so much:
pairs(sapply(MAR.omitindep[,c("poldis" , "polres" , "ecdis" , "culres" , "gcc1" )],jitter,amount=1), lower.panel=panel.smooth, upper.panel=panel.cor)

Mehmet.

On Mon, 25 Feb 2008 09:05:28 +0100
Petr PIKAL <petr.pikal at precheza.cz> wrote:

> Hi
> 
> Add
> 
> sapply(any.data.frame, jitter)
> 
> into your function. Either sapply(na.omit(.....), jitter) or 
> pairs(sapply(..., jitter), ...)
> 
> Regards
> 
> Petr
> petr.pikal at precheza.cz
> 
> r-help-bounces at r-project.org napsal dne 25.02.2008 00:26:27:
> 
> > Hi,
> > 
> > I am just starting to use R for a graduate course, and I like how
> > the correlation matrix at
> > http://addictedtor.free.fr/graphiques/RGraphGallery.php?graph=137
> > 
> > I did something similar by copying from the examples(pairs), but it
> > seems that I need to jitter the bottom panel...  and I have no idea
> > how to do that, and I mean no idea at all. I'd appreciate any
> > help... 
> > 
> > Here are the graphs: 
> > http://socy602.pbwiki.com/f/dep_correlationmatrix.jpeg
> > http://socy602.pbwiki.com/f/indep_correlationmatrix.jpeg
> > 
> > And this is the code I used to produce the graphs (not that I
> > understand it, but):
> > 
> > ######################
> > # Primary Component Analyses
> > ######################
> > 
> > ######################
> > # Dependent variables
> > ######################
> > 
> > # List of these variables: 
> > #  langfamr , ethdifxx , catness , gc7 , gc8r , gc12 , culdifxx , 
> poldifxx , ecdifxx 
> > ######################
> > # Look at correlation matrix for these
> > cor(MAR[,c("langfamr" , "ethdifxx" , "catness" , "gc7" , "gc8r" ,
> > "gc12" 
> , 
> > "culdifxx" , "poldifxx" , "ecdifxx" )], use="complete.obs")
> > # Big time correlation matrix
> >  panel.cor <- function(x, y, digits=2, prefix="", cex.cor)
> > {
> >     usr <- par("usr"); on.exit(par(usr))
> >     par(usr = c(0, 1, 0, 1))
> >     r <- abs(cor(x, y))
> >     txt <- format(c(r, 0.123456789), digits=digits)[1]
> >     txt <- paste(prefix, txt, sep="")
> >     if(missing(cex.cor)) cex <- 0.8/strwidth(txt)
> >     text(0.5, 0.5, txt, cex = cex * r)
> > }
> > MAR.omitdep <- na.omit(MAR[,c("langfamr" , "ethdifxx" , "catness" , 
> "gc7" , 
> > "gc8r" , "gc12" , "culdifxx" , "poldifxx" , "ecdifxx" )])
> > pairs(MAR.omitdep[,c("langfamr" , "ethdifxx" , "catness" , "gc7" , 
> "gc8r" , 
> > "gc12" , "culdifxx" , "poldifxx" , "ecdifxx" )], 
> lower.panel=panel.smooth, 
> > upper.panel=panel.cor)
> > # Save it
> > dev.copy(jpeg,filename="dep_correlationmatrix.jpeg",height=600, 
> width=800,bg="white")
> > dev.off()
> > 
> > ######################
> > # Independent variables
> > ######################
> > 
> > # List of variables
> > #  poldis , polres , ecdis , culres , gcc1 
> > ######################
> > # Look at the correlation matrix
> > cor(MAR[,c("poldis" , "polres" , "ecdis" , "culres" , "gcc1" )], 
> use="complete.obs")
> > # Big time correlation matrix
> >  panel.cor <- function(x, y, digits=2, prefix="", cex.cor)
> > {
> >     usr <- par("usr"); on.exit(par(usr))
> >     par(usr = c(0, 1, 0, 1))
> >     r <- abs(cor(x, y))
> >     txt <- format(c(r, 0.123456789), digits=digits)[1]
> >     txt <- paste(prefix, txt, sep="")
> >     if(missing(cex.cor)) cex <- 0.8/strwidth(txt)
> >     text(0.5, 0.5, txt, cex = cex * r)
> > }
> > MAR.omitindep <- na.omit(MAR[,c("poldis" , "polres" , "ecdis" ,
> > "culres" 
> , "gcc1" )])
> > pairs(MAR.omitindep[,c("poldis" , "polres" , "ecdis" , "culres" ,
> > "gcc1" 
> )], 
> > lower.panel=panel.smooth, upper.panel=panel.cor)
> > # Save it
> > dev.copy(jpeg,filename="indep_correlationmatrix.jpeg",height=600, 
> width=800,bg="white")
> > dev.off()
> > 
> > Thanks a lot in advance,
> > Sincerely,
> > Mehmet.
> > 
> > ______________________________________________
> > R-help at r-project.org mailing list
> > https://stat.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide 
> http://www.R-project.org/posting-guide.html
> > and provide commented, minimal, self-contained, reproducible code.
>



More information about the R-help mailing list