[Bioc-sig-seq] interaction factor in edgeR
Biase, Fernando
biase at illinois.edu
Tue May 10 20:40:23 CEST 2011
Dear list users,
I am not a statistician, so pardon my ignorance.
When using edgeR package to analyse RNA-seq data the number of differential expressed genes vary depending on whether I use an interaction factor in the design. Can anyone suggest why does it happen?
Example:
if I use:
design <- model.matrix(~ a + b , data=targets)
I have:
summary(decideTests_eset_b_tmm)
[,1]
-1 2855
0 12346
1 4928
if I use:
design <- model.matrix(~ a + b + a:b , data=targets)
then:
summary(decideTests_eset_b_tmm)
[,1]
-1 3343
0 9490
1 4191
When having more than one factor, is it more appropriate to have the interaction factor in the design?
Thanks a lot
Best,
Fernando
More information about the Bioc-sig-sequencing
mailing list